

Certificate of Analysis Full Compliance Test

Green Analytics NY, LLC 401 North Middletown Road, Building 60B Pearl River, NY 10965 www.greenanalyticsllc.com License #s: OCM-CPL-00013 ISO 17025 Certificate No.: 4356.09

Sample Result: PASS

Date Reported:	5/29/2025	Sample ID:	20250519-BEXT-001
Client Name:	Bristol Extracts, LLC	Sample Name:	Snobby Dankins-Vape-Sativa
Sampling Location:	Canandaigua, New York	Sample Name.	Trainwreck-1.0g
Contact Name:	Kristen Boorman	Sample Matrix:	Concentrate
License Number:	OCM-PROC-24-000023	Sample Sub Type:	Vape
Medical/Adult Use:	Adult Use	Package ID:	5256, 5257
Sampling Date:	05/19/2025 01:00:00 PM	Batch Lot ID:	SD-VP-25136-TW
		Batch Size:	1500

Cannabinoids: Snobby Dankins-Vape-Sativa Trainwreck-1.0g (20250519-BEXT-001)

Potency analysis utilizing HPLC (HPLC-UV: SOP-073-GA)

Analyte	% w/w	mg/serving	MRL (% w/w)	
CBDV	< MRL	< MRL	0.295	
CBDA	< MRL	< MRL	0.295	
CBGA	< MRL	< MRL	0.295	
CBG	4.472	0.447	0.295	
CBD	8.816	0.882	0.295	
THCV	0.640	0.064	0.295	
CBN	1.250	0.125	0.295	
D9-THC	82.959	8.296	0.295	
D8-THC	< MRL	< MRL	0.295	
D10-THC-S	< MRL	< MRL	0.295	
D10-THC-R	< MRL	< MRL	0.295	
CBC	1.401	0.140	0.295	
THCA	< MRL	< MRL	0.295	
	rting limit/limit of quantific 10 x serving size weight		Test ID: #109264 Date Tested: 0	05/23/2025 09:067

Potency Summary	% w/w	mg/serving
Total THC [Δ8-THC + Δ9-THC + Δ10-THC + (THCA * 0.877))]	82.959	8.296
Total CBD [CBD + (CBDA * 0.877)]	8.816	0.882
Total Cannabinoids	99.538	9.954

Results pertain to the sample received according to sampling procedures SOP-050-NY & SOP-065-NY and relate only to items tested. Serving size (g) has been provided by the client during the sampling process, unless otherwise specified. Action limits are set according to the New York State Office of Cannabis Management Testing Limits. A sample is deemed acceptable when all analyte values are within those state determined limits. Laboratory determined measurement uncertainty is available by request.

green **analytics**

Certificate of Analysis Full Compliance Test

Green Analytics NY, LLC 401 North Middletown Road, Building 60B Pearl River, NY 10965 www.greenanalyticsllc.com License #s: OCM-CPL-00013 ISO 17025 Certificate No.: 4356.09

 \rightarrow

nalyte	Result (% w/w)	MRL (% w/w)	
alpha-Pinene	0.15	0.11	
Camphene	< MRL	0.11	
Sabinene	< MRL	0.11	
beta-Pinene	0.28	0.11	
beta-Myrcene	0.34	0.11	
Alpha-phellandrene	< MRL	0.11	
Carene	< MRL	0.11	
alpha-terpinene	< MRL	0.11	
p-Cymene	< MRL	0.11	
Limonene	0.38	0.11	
Eucalyptol	< MRL	0.11	
Ocimene	0.13	0.08	
gamma-Terpinene	< MRL	0.11	
Šabinene Hydrate	< MRL	0.11	
Terpinolene	1.06	0.11	
Linalool	< MRL	0.11	
Fenchol	< MRL	0.11	
Menthol	< MRL	0.11	
Terpineol	< MRL	0.11	
Citronellol	< MRL	0.11	
Isopulegol	< MRL	0.11	
Geraniol	< MRL	0.11	
Alpha-cedrene	< MRL	0.09	
Beta-Caryophyllene	0.51	0.11	
Farnesene	0.14	0.11	
alpha-Humulene	< MRL	0.11	
Valencene	0.16	0.11	
cis-Nerolidol	< MRL	0.04	
trans-Nerolidol	< MRL	0.07	
Caryophyllene oxide	< MRL	0.11	
Guaiol	< MRL	0.11	
alpha-Bisabolol	0.12	0.11	

Terpenes Summary	Result	Limit	Pass/Fail
Total Terpenes (% w/w)	3.27	10	PASS

green analytics \rightarrow ny, llc

Certificate of Analysis Full Compliance Test

Green Analytics NY, LLC 401 North Middletown Road, Building 60B Pearl River, NY 10965 www.greenanalyticsllc.com License #s: OCM-CPL-00013 ISO 17025 Certificate No.: 4356.09

Residual Solvents: Snobby Dan BEXT-001)	kins-Vape-Sa	tiva Trainwreck-	-1.0g (202505	⁵¹⁹⁻ PASS
Residual solvents and processing chemicals an SOP-010-GA)	alysis utilizing Head	space Gas Chromatogra	phy – Mass Spectrom	etry (GC-MS: SOP-067-GA,
Analyte	Pass/Fail	Result (µg/g)	Limit (µg/g)	MRL (µg/g)
2-Propanol Acetone Acetonitrile Butanes, total Benzene Chloroform Dichloromethane Dimethyl Sulfoxide Ethanol Ethyl acetate Ethyl ether	PASS PASS PASS PASS PASS PASS PASS PASS	< MRL < MRL < MRL < MRL < MRL < MRL < MRL < MRL < MRL < MRL	$5000 \\ 5000 \\ 410 \\ 5000 \\ 2 \\ 60 \\ 600 \\ 5000 \\ $	$\begin{array}{c} 621.965\\ 1279.630\\ 51.001\\ 621.965\\ 0.830\\ 7.464\\ 74.636\\ 1119.537\\ 621.965\\ 621.965\\ 621.965\\ 621.965\end{array}$
n-Heptane Hexanes, total Methanol Pentanes, total Propane Tetrafluoroethane (1,1,1,2-) (HFC-134a) Toluene Trichloroethane Xylenes, total	PASS PASS PASS PASS PASS PASS PASS PASS	< MRL < MRL < MRL < MRL < MRL < MRL < MRL < MRL < MRL < MRL	5000 290 3000 5000 1000 890 1500 2170	621.965 36.074 373.180 621.965 621.965 403.033 110.710 1119.537 269.934
MRL = Minimum reporting limit/limit of quantific	ation	Test ID: #	109267 Date Tested:	05/23/2025 11:28 AM

Results pertain to the sample received according to sampling procedures SOP-050-NY & SOP-065-NY and relate only to items tested. Serving size (g) has been provided by the client during the sampling process, unless otherwise specified. Action limits are set according to the New York State Office of Cannabis Management Testing Limits. A sample is deemed acceptable when all analyte values are within those state determined limits. Laboratory determined measurement uncertainty is available by request.

→ green analytics

Certificate of Analysis Full Compliance Test

Green Analytics NY, LLC 401 North Middletown Road, Building 60B Pearl River, NY 10965 www.greenanalyticsllc.com License #s: OCM-CPL-00013 ISO 17025 Certificate No.: 4356.09

Pesticides: Snobby Da	nkins-Vape-Sati	va Trainwreck-1.0	Dg (20250519-	BEXT-001)	PASS
Residual pesticide analysis utilizing	Liquid Chromatograph	y - Mass Spectrometry (L	C-MS/MS: SOP-062-G/	A, SOP-070-GA)	
Analyte	Pass/Fail	Result (µg/g)	Limit (µg/g)	MRL (µg/g)	
Abamectin Acephate	PASS PASS	< MRL < MRL	0.50 0.40	0.100 0.100	
Acequinocyl	PASS	< MRL	2.00	0.100	
Acetamiprid	PASS	< MRL	0.20	0.100	
Aldicarb Azadirachtin	PASS PASS	< MRL < MRL	0.40 1.00	0.100 0.250	
Azoxystrobin	PASS		0.20	0.250	
Bifenazate	PASS	< MRL	0.20	0.100	
Bifenthrin	PASS	< MRL	0.20	0.100	
Boscalid Captan	PASS PASS	< MRL < MRL	0.40 1.00	0.100 0.500	
Carbaryl	PASS	< MRL	0.20	0.100	
Carbofuran	PASS	< MRL	0.20	0.100	
Chlorantranilprole Chlordane	PASS PASS	< MRL < MRL	0.20 1.00	0.100 0.250	
Chlorfenapyr	PASS	< MRL	1.00	0.250	
Chlormequat chloride	PASS	< MRL	1.00	0.100	
Chlorpyrifos	PASS	< MRL	0.20	0.100	
Clofentezine Coumaphos	PASS PASS	< MRL < MRL	0.20 1.00	0.100 0.100	
Cyfluthrin	PASS	< MRL	1.00	0.100	
Cypermethrin	PASS	< MRL	1.00	0.100	
Daminozide Diazinon	PASS PASS	< MRL < MRL	1.00 0.20	0.100 0.100	
Dichlorvos	PASS	< MRL	1.00	0.100	
Dimethoate	PASS	< MRL	0.20	0.100	
Dimethomorph	PASS	< MRL	1.00	0.100	
Ethoprophos Etofenprox	PASS PASS	< MRL < MRL	0.20 0.40	0.100 0.100	
Etoxazole	PASS	< MRL	0.20	0.100	
Fenhexamid	PASS	< MRL	1.00	0.100	
Fenoxycarb Fenpyroximate	PASS PASS	< MRL < MRL	0.20 0.40	0.100 0.100	
Fipronil	PASS	< MRL	0.40	0.100	
Flonicamid	PASS	< MRL	1.00	0.100	
Fludioxonil	PASS	< MRL < MRL	0.40 1.00	$0.100 \\ 0.100$	
Hexythiazox Imazalil	PASS PASS	< MRL < MRL	0.20	0.100	
Imidacloprid	PASS	< MRL	0.40	0.100	
Indole-3-butyric acid	PASS	< MRL	1.00	0.250	
Kresoxim-methyl Malathion	PASS PASS	< MRL < MRL	0.40 0.20	0.100 0.100	
Metalaxyl	PASS	< MRL	0.20	0.100	
Methiocarb	PASS	< MRL	0.20	0.100	
Methomyl Methyl Parathion	PASS PASS	< MRL < MRL	0.40 0.20	0.100 0.050	
Mevinphos	PASS	< MRL	1.00	0.100	
MGK-264 I/II	PASS	< MRL	0.20	0.100	
Myclobutanil Naled	PASS PASS	< MRL < MRL	0.20 0.50	$0.100 \\ 0.100$	
Oxamyl	PASS	< MRL < MRL	1.00	0.100	
Paclobutrazol	PASS	< MRL	0.40	0.100	
Pentachloronitrobenzene	PASS	< MRL	1.00	0.250	
Permethrins, total Phosmet	PASS PASS	< MRL < MRL	0.20 0.20	0.100 0.100	
Piperonyl butoxide	PASS	< MRL	2.00	0.100	
Prallethrin	PASS	< MRL	0.20	0.100	
Propiconazole Propoxur	PASS PASS	< MRL < MRL	0.40 0.20	0.100 0.100	
Pyrethrins	PASS	< MRL	1.00	0.100	
Pýridaben	PASS	< MRL	0.20	0.100	
Spinetoram, Total Spinosad, Total	PASS PASS	< MRL < MRL	1.00 0.20	$0.100 \\ 0.100$	
Spiromesifen	PASS	< MRL	0.20	0.100	
Spirotetramat	PASS	< MRL	0.20	0.100	
Spiroxamine	PASS PASS	< MRL	0.20 0.40	0.100 0.100	
Tebuconazole Thiacloprid	PASS	< MRL < MRL	0.40	0.100	
Thiamethoxam	PASS	< MRL	0.20	0.100	
Trifloxystrobin	PASS	< MRL	0.20	0.100	
MRL = Minimum reporting limit/lim	it of quantification	Те	est ID: #109268 Date T	ested: 05/23/2025 0)7:25 AM

Results pertain to the sample received according to sampling procedures SOP-050-NY & SOP-065-NY and relate only to items tested. Serving size (g) has been provided by the client during the sampling process, unless otherwise specified. Action limits are set according to the New York State Office of Cannabis Management Testing Limits. A sample is deemed acceptable when all analyte values are within those state determined limits. Laboratory determined measurement uncertainty is available by request.

Certificate of Analysis Full Compliance Test

Green Analytics NY, LLC 401 North Middletown Road, Building 60B Pearl River, NY 10965 www.greenanalyticsllc.com License #s: OCM-CPL-00013 ISO 17025 Certificate No.: 4356.09

Mycotoxins: Snobby Dankins-Vape-Sativa Trainwreck-1.0g (20250519-BEXT-001)						
Mycotoxin analysis utilizing Liquid Chromatography - Mass Spectrometry (LC-MS/MS: SOP-062-GA, SOP-070-GA)						
	Pass/Fail	Result (µq/q)	Limit (µg/g) MRL (µg/g)		
Analyte	Pass/Fall	Result (µg/g)	Ennit (µg/g) WITE (µg/g)		
Analyte Ochratoxin	PASS	< MRL	0.02	0.010	-	

MRL = Minimum reporting limit/limit of quantification

est ID: #109265 | Date Tested: 05/23/2025 07:26 AM

Heavy Metals: Snobby Dankins-Vape-Sativa Trainwreck-1.0g (20250519-BEXT-001) PASS

Heavy Metals analysis utilizing Inductively Coupled Plasma Mass Spectrometry (ICP-MS: SOP-061-NY, SOP-072-GA)

Chromium	PASS	< MRL	44.0.0	
	17.00		110.0	8.00
Nickel	PASS	< MRL	2.0	1.00
Copper	PASS	< MRL	30.0	8.00
Arsenic	PASS	< MRL	0.2	0.10
Cadmium	PASS	< MRL	0.2	0.10
Antimony	PASS	< MRL	2.0	1.00
Mercury	PASS	< MRL	0.1	0.05
Lead	PASS	< MRL	0.5	0.20

Microbiology - Plating: Snobby Dankins-Vape-Sativa Trainwreck-1.0g (20250519- BEXT-001)							
Microbial analysis utilizing microbial e	enumeration (S	OP-700-NY)					
Analyte	Pass/Fail	Result	s (CFU/g)	Limit (CFU/g)	MRL (CFU/g)		
Total Aerobic Bacteria	PASS	< MRL		10000	100		
Total Yeast & Mold	PASS	< MRL		1000	100		
Microbiology - qPCR:							
Microbial analysis utilizing quantitativ	e Polymerase C	Chain Reaction	(SOP-701-NY)				
Analyte		Pass/Fail	Results (CFU/g)	Limit (CFU/g)	MRL (CFU/g)		
Salmonella spp		PASS	Absent	Absent	1		
Shiga toxin-producing E. coli		PASS	Absent	Absent	1		
Aspergillus (fumigatus, flavus, niger	, terreus)	PASS	Absent	Absent	1		
MRL = Minimum reporting limit/limit	of quantification		Test ID	0: #109270 Date Test	ed: 05/29/2025 09:16 AM		

Mathen Elmes

Matthew Elmes Lab Director 5/29/2025

Results pertain to the sample received according to sampling procedures SOP-050-NY & SOP-065-NY and relate only to items tested. Serving size (g) has been provided by the client during the sampling process, unless otherwise specified. Action limits are set according to the New York State Office of Cannabis Management Testing Limits. A sample is deemed acceptable when all analyte values are within those state determined limits. Laboratory determined measurement uncertainty is available by request.